Orthogonal Matrices

(w1Tw2Tw3T)(v1v2v3)=(w1Tv1w1Tv2w1Tv3w2Tv1w2Tv2w2Tv3w3Tv1w3Tv2w3Tv3)Suppose that {v^1,v^2,...,v^n} is an orthonormal basisA=(v^1...v^n)Then, AT=A1(ATA)ij=v^iv^j={1,i=j0,ij\begin{pmatrix} \overrightarrow{w_1}^T \\ \overrightarrow{w_2}^T \\ \overrightarrow{w_3}^T \\ \end{pmatrix} \begin{pmatrix} \overrightarrow{v_1} & \overrightarrow{v_2} & \overrightarrow{v_3} \end{pmatrix} = \begin{pmatrix} \overrightarrow{w_1}^T \overrightarrow{v_1} & \overrightarrow{w_1}^T \overrightarrow{v_2} & \overrightarrow{w_1}^T \overrightarrow{v_3} \\ \overrightarrow{w_2}^T \overrightarrow{v_1} & \overrightarrow{w_2}^T \overrightarrow{v_2} & \overrightarrow{w_2}^T \overrightarrow{v_3} \\ \overrightarrow{w_3}^T \overrightarrow{v_1} & \overrightarrow{w_3}^T \overrightarrow{v_2} & \overrightarrow{w_3}^T \overrightarrow{v_3} \\ \end{pmatrix} \\ \text{Suppose that } \{\hat{v}_1, \hat{v}_2, ..., \hat{v}_n\} \text{ is an orthonormal basis} \\ A = \begin{pmatrix} \hat{v}_1 & ... & \hat{v}_n \end{pmatrix} \\ \text{Then, } A^T = A^{-1} \\ (A^T A)_{ij} = \hat{v}_i \cdot \hat{v}_j = \begin{cases} 1, i = j \\ 0, i \neq j \end{cases}

Lines of Best Fit (LSRL)

Ax=b(10111213)(β0β1)=(β0β1(0)β0β1(1)β0β1(2)β0β1(3))=(2413)ATA=(11110123)(10111213)=(46614)ATb=(11110123)(2413)=(1015)(461061415)(102.5010)(β0β1)=(2.50) which corresponds to the line y=2.5A \overrightarrow{x} = \overrightarrow{b} \begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 2 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} \beta_0 \\ \beta_1 \end{pmatrix} = \begin{pmatrix} \beta_0 & \beta_1(0) \\ \beta_0 & \beta_1(1) \\ \beta_0 & \beta_1(2) \\ \beta_0 & \beta_1(3) \end{pmatrix} = \begin{pmatrix} 2 \\ 4 \\ 1 \\ 3 \end{pmatrix} \\ A^T A = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 2 \\ 1 & 3 \end{pmatrix} = \begin{pmatrix} 4 & 6 \\ 6 & 14 \\ \end{pmatrix} \\ A^T \overrightarrow{b} = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 \end{pmatrix} \begin{pmatrix} 2 \\ 4 \\ 1 \\ 3 \end{pmatrix} = \begin{pmatrix} 10 \\ 15 \\ \end{pmatrix} \\ \left( \begin{array}{cc|c} 4 & 6 & 10 \\ 6 & 14 & 15\\ \end{array} \right) \rightarrow \left( \begin{array}{cc|c} 1 & 0 & 2.5 \\ 0 & 1 & 0 \\ \end{array} \right) \begin{pmatrix} \beta_0 \\ \beta_1 \end{pmatrix} = \begin{pmatrix} 2.5 \\ 0 \end{pmatrix} \text{ which corresponds to the line } y = 2.5