Similar Matrices

Two matrices A and B are similar if there exists invertible P such that A=PBP1\text{Two matrices A and B are similar if there exists invertible P such that } A = PBP^{-1}
    Theorem

: If A and B are similar, then they have the same eigenvalues and determinants

Proof

λInA=λInPBP1=λPInP1PBP1=P(λInP1BP1)=P(λInB)P1\lambda I_n - A = \lambda I_n - PBP^{-1} = \lambda PI_nP^{-1} - PBP^{-1} = P(\lambda I_nP^{-1} - BP^{-1}) \\ = P(\lambda I_n - B)P^{-1}

Upon taking determinants, we get that the characteristic polynomial of A is equal to the characteristic polynomial of B. Notated as PA(λ) = PB(λ).

v is an eigenvector for A     P1v is an eigenvector of Bu is an eigenvector for B     Pu is an eigenvector of A\overrightarrow{v} \text{ is an eigenvector for A } \implies P^{-1}\overrightarrow{v} \text{ is an eigenvector of B} \\ \overrightarrow{u} \text{ is an eigenvector for B } \implies P\overrightarrow{u} \text{ is an eigenvector of A} \\

Example

A=(12323212),B=(2001),P=(1111)(1111)(2001)12(1111)=12(1111)(2211)=12(1331)A = \begin{pmatrix} \frac{1}{2} & \frac{3}{2} \\ \frac{3}{2} & \frac{1}{2} \end{pmatrix}, B = \begin{pmatrix} 2 & 0 \\ 0 & -1 \end{pmatrix}, P = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \\ \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 0 & -1 \end{pmatrix} * \frac{1}{2} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \\ = \frac{1}{2} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 2 & 2 \\ -1 & 1 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 1 & 3 \\ 3 & 1 \end{pmatrix}

In this example, the eigenvalues of A and B are 2 and -1 (based on B).

(10) is a 2-eigenvector of B (because you simply have to multiply by the top row)(01) is a -1-eigenvector of B\begin{pmatrix} 1 \\ 0 \end{pmatrix} \text{ is a 2-eigenvector of B (because you simply have to multiply by the top row)} \\ \begin{pmatrix} 0 \\ -1 \end{pmatrix} \text{ is a -1-eigenvector of B} \\ (1111)(10)=(11) is a 2-eigenvector for A(1111)(01)=(11) is a -1-eigenvector for A\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \text{ is a 2-eigenvector for A} \\ \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \end{pmatrix} \text{ is a -1-eigenvector for A}

Diagonalization

A diagonal matrix is a square matrix whose only potentially nonzero entries lie on the diagonal. Note that you CAN have zeroes on the diagonal (thus, the zero matrix is a diagonal matrix), but you can NOT have nonzeroes off of the diagonal.

Example

We want to turn A=(1652) into D=(7004) to more easily find its eigenvalues.A matrix is diagonalizable if there is a diagonal matrix D such that A=PDP1 (i.e. A and D are similar).\text{We want to turn } A = \begin{pmatrix} 1 & 6 \\ 5 & 2 \end{pmatrix} \text{ into } D = \begin{pmatrix} 7 & 0 \\ 0 & -4 \end{pmatrix} \text{ to more easily find its eigenvalues.} \\ \text{A matrix is diagonalizable if there is a diagonal matrix D such that } A = PDP^{-1} \text{ (i.e. A and D are similar).} A=(1652),D=(7004)Instead of using A=PDP1 we can use AP=PDFrom last time: 7 is an eigenvalue with eigenvector (11) and -4 is an eigenvalue with eigenvector (65)P=(1615),det(P)=11AP=(A(11)A(65))=(724720)PD=(1615)(7004)=(724720)Thus, we have verified that AP = PD.A = \begin{pmatrix} 1 & 6 \\ 5 & 2 \end{pmatrix}, D = \begin{pmatrix} 7 & 0 \\ 0 & -4 \end{pmatrix} \\ \text{Instead of using } A = PDP^{-1} \text{ we can use } AP = PD \\ \text{From last time: 7 is an eigenvalue with eigenvector } \begin{pmatrix} 1 \\ 1 \end{pmatrix} \text{ and -4 is an eigenvalue with eigenvector } \begin{pmatrix} -6 \\ 5 \end{pmatrix} \\ P = \begin{pmatrix} 1 & -6 \\ 1 & 5 \end{pmatrix}, det(P) = 11 \\ AP = (A\begin{pmatrix} 1 \\ 1 \end{pmatrix} A \begin{pmatrix} -6 \\ 5 \end{pmatrix}) = \begin{pmatrix} 7 & 24 \\ 7 & -20 \end{pmatrix} \\ PD = \begin{pmatrix} 1 & -6 \\ 1 & 5 \end{pmatrix} \begin{pmatrix} 7 & 0 \\ 0 & -4 \end{pmatrix} = \begin{pmatrix} 7 & 24 \\ 7 & -20 \end{pmatrix} \\ \text{Thus, we have verified that AP = PD.} If we know that eigenvalues of n x n matrix A are λ1,...,λn with eigenvectors v1,...,vnD=(λ1...00...λn),P=(v1...vn)Only applies if A has n distinct, linearly independent eigenvectors.\text{If we know that eigenvalues of n x n matrix A are } \lambda _1, ..., \lambda _n \text{ with eigenvectors } \overrightarrow{v_1}, ..., \overrightarrow{v_n} \\ D = \begin{pmatrix} \lambda _1 & ... & 0 \\ \vdots & \ddots & \vdots \\ 0 & ... & \lambda _n \end{pmatrix}, P = \begin{pmatrix} \overrightarrow{v_1} & ... & \overrightarrow{v_n} \end{pmatrix} \\ \text{Only applies if A has n distinct, linearly independent eigenvectors.}