Finding Eigenvalues

λ is an eigenvalue of A     λ is a root of det(tInA)=PA(t)\lambda \text{ is an eigenvalue of A } \iff \lambda \text{ is a root of } det(t I_n - A) = P_A (t)

PA(t) is known as the **characteristic polynomial. Also, lambda and t can be used interchangeably.

Example

det(λ(1001)(1111))=det((λ111λ1))=λ22λ=λ(λ2)There are two eigenvalues: 0 and 2.det(\lambda \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} - \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}) \\ = det(\begin{pmatrix} \lambda - 1 & -1 \\ -1 & \lambda - 1 \end{pmatrix}) = \lambda ^2 - 2\lambda = \lambda (\lambda - 2) \\ \text{There are two eigenvalues: 0 and 2.} A=(0615)det(λ(1001)(0615))=det(λ(λ61λ5))=λ25λ+6=(λ3)(λ2)There are two eigenvalues: 2 and 3.A = \begin{pmatrix} 0 & 6 \\ -1 & 5 \end{pmatrix} \\ det(\lambda \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} - \begin{pmatrix} 0 & 6 \\ -1 & 5 \end{pmatrix}) \\ = det(\lambda \begin{pmatrix} \lambda & -6 \\ 1 & \lambda - 5 \end{pmatrix}) = \lambda^2 - 5\lambda + 6 = (\lambda - 3)(\lambda - 2) \\ \text{There are two eigenvalues: 2 and 3.} A=(1652)det(λ(1001)(1652))=det(λ(λ165λ2))=λ23λ28=(λ7)(λ+4)There are two eigenvalues: -4 and 7.Nul(7I2A) contains our eigenvectors, as (7I2A)v=07vAv=0Nul(7I2A)=Nul((6655))=Nul((1111))=Nul((1100))(1100)(ab)=(ab0)=(00) when a = bThus, any vectors where a = b are 7-eigenvectors for A, such as (11)Nul(4I2A)=Nul(4I2+A)=Nul((5656))=Nul((5600))=Nul((16500))(16500)(ab)=(a+65b0)=(00) when a=65bThus, any vectors where a=65b are -4-eigenvectors for A, such as (65) or Span{(65)}A = \begin{pmatrix} 1 & 6 \\ 5 & 2 \end{pmatrix} \\ det(\lambda \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} - \begin{pmatrix} 1 & 6 \\ 5 & 2 \end{pmatrix}) \\ = det(\lambda \begin{pmatrix} \lambda - 1 & -6 \\ -5 & \lambda - 2 \end{pmatrix}) = \lambda^2 - 3\lambda - 28 = (\lambda - 7)(\lambda + 4) \\ \text{There are two eigenvalues: -4 and 7.} \\ Nul(7 I_2 - A) \text{ contains our eigenvectors, as } (7 I_2 - A) \overrightarrow{v} = \overrightarrow{0} \rightarrow 7\overrightarrow{v} - A\overrightarrow{v} = \overrightarrow{0} \\ Nul(7 I_2 - A) = Nul(\begin{pmatrix} 6 & -6 \\ -5 & 5 \end{pmatrix}) = Nul(\begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}) = Nul(\begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix}) \\ \begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} a - b \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \text{ when a = b}\\ \text{Thus, any vectors where a = b are 7-eigenvectors for A, such as } \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ Nul(-4 I_2 - A) = Nul(4 I_2 + A) = Nul(\begin{pmatrix} 5 & 6 \\ 5 & 6 \end{pmatrix}) = Nul(\begin{pmatrix} 5 & 6 \\ 0 & 0 \end{pmatrix}) = Nul(\begin{pmatrix} 1 & \frac{6}{5} \\ 0 & 0 \end{pmatrix})\\ \begin{pmatrix} 1 & \frac{6}{5} \\ 0 & 0 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} a + \frac{6}{5}b \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \text{ when } a = -\frac{6}{5}b\\ \text{Thus, any vectors where } a = -\frac{6}{5}b \text{ are -4-eigenvectors for A, such as } \begin{pmatrix} -6 \\ 5 \end{pmatrix} \text{ or } Span\{\begin{pmatrix} -6 \\ 5 \end{pmatrix}\} \\

Note: The nullspace associated with an eigenvalue has a special name: Ex = the x-eigenspace of A, where x is replaced by the eigenvalue that represents the eigenspace.

A=(1112),eigenvalues are 12(3±5)(ab)E12(3±5)A(ab)=λ(ab)12(3±5)(ab)=(1112)(ab)=(a+ba+2b)12(3±5)a=a+b, so b=12(1±5)E12(3±5) is spanned by {(112(1±5))}A = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}, \text{eigenvalues are } \frac{1}{2} (3 \pm \sqrt{5}) \\ \begin{pmatrix} a \\ b \end{pmatrix} \in E_{\frac{1}{2} (3 \pm \sqrt{5})} \\ A \begin{pmatrix} a \\ b \end{pmatrix} = \lambda \begin{pmatrix} a \\ b \end{pmatrix} \rightarrow \frac{1}{2} (3 \pm \sqrt{5}) \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} a + b \\ a + 2b \end{pmatrix} \\ \frac{1}{2} (3 \pm \sqrt{5}) a = a + b \text{, so } b = \frac{1}{2} (1 \pm \sqrt{5}) \\ E_{\frac{1}{2} (3 \pm \sqrt{5})} \text{ is spanned by } \{\begin{pmatrix} 1 \\ \frac{1}{2} (1 \pm \sqrt{5}) \end{pmatrix} \}