Inverting a Matrix

Given that A is invertible, we can calculate A-1 as follows:

(A1)ij=(1)i+jAjiA(A^{-1})_{ij} = (-1)^{i+j} \frac{|A_{ji|}}{|A|}

Aji is the matrix we get by deleting the jth row and the ith column.

This is more of a conceptual method to invert a matrix, but less efficient than inverting matrices through row reduction

Example

A=(367021234)A1=1A((+(2134)(0124)+(0223)(6734)+(3724)(3623)+(6721)(3701)+(3602)))A = \begin{pmatrix} 3 & 6 & 7 \\ 0 & 2 & 1 \\ 2 & 3 & 4 \end{pmatrix} \\ A^{-1} = \frac{1}{|A|} * ( \begin{pmatrix} + \begin{pmatrix} 2 & 1 \\ 3 & 4 \end{pmatrix} & - \begin{pmatrix} 0 & 1 \\ 2 & 4 \end{pmatrix} & + \begin{pmatrix} 0 & 2 \\ 2 & 3 \end{pmatrix} \\ - \begin{pmatrix} 6 & 7 \\ 3 & 4 \end{pmatrix} & + \begin{pmatrix} 3 & 7 \\ 2 & 4 \end{pmatrix} & - \begin{pmatrix} 3 & 6 \\ 2 & 3 \end{pmatrix} \\ + \begin{pmatrix} 6 & 7 \\ 2 & 1 \end{pmatrix} & - \begin{pmatrix} 3 & 7 \\ 0 & 1 \end{pmatrix} & + \begin{pmatrix} 3 & 6 \\ 0 & 2 \end{pmatrix} \\ \end{pmatrix} )

Eigenvalues and Eigenvectors

Consider the matrix A=(1652),v=(11)(1652)(11)=(77)=7(11)\text{Consider the matrix } A = \begin{pmatrix} 1 & 6 \\ 5 & 2 \end{pmatrix}, \overrightarrow{v} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ \begin{pmatrix} 1 & 6 \\ 5 & 2 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 7 \\ 7 \end{pmatrix} = 7 * \begin{pmatrix} 1 \\ 1 \end{pmatrix}

In the above example, the eigenvalue is 7 and the eigenvector is v.

If Av=λv for λR and v01. λ is an eigenvalue of A2. v is an eigenvector of A\text{If } A\overrightarrow{v} = \lambda \overrightarrow{v} \text{ for } \lambda \in \mathbb{R} \text{ and } \overrightarrow{v} \neq \overrightarrow{0} \\ \text{1. } \lambda \text{ is an eigenvalue of A} \\ \text{2. } \overrightarrow{v} \text{ is an eigenvector of A}

Examples

A=(73104),v=(35)Av=(610)=2(35)A = \begin{pmatrix} 7 & -3 \\ 10 & -4 \end{pmatrix}, \overrightarrow{v} = \begin{pmatrix} 3 \\ 5 \end{pmatrix} \\ A \overrightarrow{v} = \begin{pmatrix} 6 \\ 10 \end{pmatrix} = 2 * \begin{pmatrix} 3 \\ 5 \end{pmatrix}
A=(1111),v2=(11),v0=(11)Av2=(22)=2v2Av0=(00)=0v0A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, \overrightarrow{v_2} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \overrightarrow{v_0} = \begin{pmatrix} 1 \\ -1 \end{pmatrix} \\ A \overrightarrow{v_2} = \begin{pmatrix} 2 \\ 2 \end{pmatrix} = 2 * \overrightarrow{v_2} \\ A \overrightarrow{v_0} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} = 0 * \overrightarrow{v_0}

Note that each eigenvectors has ONE eigenvalue, but eigenvalues can have MULTIPLE eigenvectors. Each eigenvalue has a “family” of eigenvectors that can be scaled up or down to get the same eigenvalue.

Finding eigenvalues

Suppose that Av=λv for λR and v0. Then, the following chain of implications holds: Av=λv    λvAv=0=λInvAv=0    (λInA)v=0    vNul(λInA)={0}    (λInA) is non invertible     det(λInA)=0    λ is a root of det(λInA)Note: det(λInA) can be represented as a nth degree polynomial PA(t)\text{Suppose that } A\overrightarrow{v} = \lambda \overrightarrow{v} \text{ for } \lambda \in \mathbb{R} \text{ and } \overrightarrow{v} \neq \overrightarrow{0} \text{. Then, the following chain of implications holds: } \\ A\overrightarrow{v} = \lambda \overrightarrow{v} \iff \lambda \overrightarrow{v} - A\overrightarrow{v} = \overrightarrow{0} = \lambda I_n \overrightarrow{v} - A\overrightarrow{v} = \overrightarrow{0} \\ \iff (\lambda I_n - A) \overrightarrow{v} = \overrightarrow{0} \iff \overrightarrow{v} \in Nul(\lambda I_n - A) = \{\overrightarrow{0}\} \\ \iff (\lambda I_n - A) \text{ is non invertible } \iff det(\lambda I_n - A) = 0 \iff \lambda \text{ is a root of } det(\lambda I_n - A) \\ \text{Note: } det(\lambda I_n - A) \text{ can be represented as a nth degree polynomial } P_A (t)