Properties

Consider a linear function T: RnRmT is onto if every wRm can be written as T(v)=wT is one-to-one if T(v)=T(v)    v=wT is a bijection if it is both onto and one-to-one\text{Consider a linear function T: } \mathbb{R}^n \rightarrow \mathbb{R}^m \\ \text{T is \underline{onto} if every } \overrightarrow{w} \in \mathbb{R}^m \text{ can be written as } T(\overrightarrow{v}) = \overrightarrow{w} \\ \text{T is \underline{one-to-one} if } T(\overrightarrow{v}) = T(\overrightarrow{v}) \implies \overrightarrow{v} = \overrightarrow{w} \\ \text{T is a \underline{bijection} if it is both onto and one-to-one}

Other ways to define properties

T is onto if and only if ATx=b is consistent for every bRmT is one-to-one if and only if the columns of AT are linearly independent\text{T is onto if and only if } A_T \overrightarrow{x} = \overrightarrow{b} \text{ is consistent for every } \overrightarrow{b} \in \mathbb{R}^m \\ \text{T is one-to-one if and only if the columns of } A_T \text{ are linearly independent}

Examples

The function defined by this matrix multiplication is onto:(101010)(ab0)=(ab)The function defined by this matrix multiplication is one-to-one:(100100)(ab)=(ab0)The function defined by this matrix multiplication is a bijection:(cosθsinθsinθcosθ)\text{The function defined by this matrix multiplication is onto:}\\ \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} a \\ b \\ 0 \end{pmatrix} = \begin{pmatrix} a \\ b \end{pmatrix} \\ \text{The function defined by this matrix multiplication is one-to-one:} \\ \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} a \\ b \\ 0\end{pmatrix} \\ \text{The function defined by this matrix multiplication is a bijection:} \\ \begin{pmatrix} cos\theta & -sin\theta \\ sin\theta & cos\theta \end{pmatrix}

Invertible Matrices

Consider a n x n matrix A. A is invertible if there exists A1 such that A1A=AA1=InThe matrix A also has to represent a bijective linear transformation.\text{Consider a n x n matrix A. A is invertible if there exists } A^{-1} \text{ such that } A^{-1} * A = A * A^{-1} = I_n \\ \text{The matrix A also has to represent a bijective linear transformation.} Theorem: An n x n matrix A is invertible if and only if the RREF of A is In.In this case, row operations that take A to In transform In into A1(AIn)(InA1)\text{Theorem: An n x n matrix A is invertible if and only if the RREF of A is } I_n \text{.}\\ \text{In this case, row operations that take A to } I_n \text{ transform } I_n \text{ into } A^{-1} \\ (A | I_n) \rightarrow (I_n | A^{-1}) Theorem: For an n x n matrix A, the following are equivalent:A is invertibleA has a pivot in every rowA has a pivot in every column\text{Theorem: For an n x n matrix A, the following are equivalent:} \\ \text{A is invertible} \\ \text{A has a pivot in every row} \\ \text{A has a pivot in every column}

Examples

(0001) is not invertible because you cannot get a 1 in the top left cell. Proof: (0001)(abcd)=(00cd)\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \text{ is not invertible because you cannot get a 1 in the top left cell. Proof: }\\ \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ c & d \end{pmatrix}

Invert (123014560)(123100014010560001)(1231000140100415501)(123100014010001541)(1201612301020154001541)(1002418501020154001541)Therefore, the inverse of (123014560) is (2418520154541)\text{Invert } \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 4 \\ 5 & 6 & 0 \end{pmatrix} \\ \left( \begin{array}{ccc|ccc} 1 & 2 & 3 & 1 & 0 & 0 \\ 0 & 1 & 4 & 0 & 1 & 0\\ 5 & 6 & 0 & 0 & 0 & 1 \end{array} \right) \rightarrow \left( \begin{array}{ccc|ccc} 1 & 2 & 3 & 1 & 0 & 0 \\ 0 & 1 & 4 & 0 & 1 & 0\\ 0 & -4 & -15 & -5 & 0 & 1 \end{array} \right) \rightarrow \left( \begin{array}{ccc|ccc} 1 & 2 & 3 & 1 & 0 & 0 \\ 0 & 1 & 4 & 0 & 1 & 0\\ 0 & 0 & 1 & -5 & 4 & 1 \end{array} \right) \\ \left( \begin{array}{ccc|ccc} 1 & 2 & 0 & 16 & -12 & -3 \\ 0 & 1 & 0 & 20 & -15 & -4\\ 0 & 0 & 1 & -5 & 4 & 1 \end{array} \right) \rightarrow \left( \begin{array}{ccc|ccc} 1 & 0 & 0 & -24 & 18 & 5 \\ 0 & 1 & 0 & 20 & -15 & -4 \\ 0 & 0 & 1 & -5 & 4 & 1 \end{array} \right) \\ \text{Therefore, the inverse of } \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 4 \\ 5 & 6 & 0 \end{pmatrix} \text{ is } \begin{pmatrix} -24 & 18 & 5 \\ 20 & -15 & -4 \\ -5 & 4 & 1 \end{pmatrix} Invert (120312232)(120100312010232001)(120100072310072201)(120100072310000111)Since the RREF of the matrix does not have a pivot in every row and column, it is not invertible.\text{Invert } \begin{pmatrix} 1 & 2 & 0 \\ 3 & -1 & 2 \\ -2 & 3 & -2 \end{pmatrix} \\ \left( \begin{array}{ccc|ccc} 1 & 2 & 0 & 1 & 0 & 0 \\ 3 & -1 & 2 & 0 & 1 & 0\\ -2 & 3 & -2 & 0 & 0 & 1 \end{array} \right) \rightarrow \left( \begin{array}{ccc|ccc} 1 & 2 & 0 & 1 & 0 & 0 \\ 0 & -7 & 2 & -3 & 1 & 0\\ 0 & 7 & -2 & 2 & 0 & 1 \end{array} \right) \rightarrow \left( \begin{array}{ccc|ccc} 1 & 2 & 0 & 1 & 0 & 0 \\ 0 & -7 & 2 & -3 & 1 & 0\\ 0 & 0 & 0 & -1 & 1 & 1 \end{array} \right) \\ \text{Since the RREF of the matrix does not have a pivot in every row and column, it is not invertible.}