Properties of Matrix Operations
Math 3A
Addition
- A + B = B + A (commutative)
- (A + B) + C = A + (B + C) (associative)
- 0 + A = A
- (-A) + A = 0
Multiplication
- In matrix multiplication, the number of columns in the first matrix need to be equal to the number of rows in the second
- These properties work under the assumption that the dimensions match up
- A * (B * C) = (A * B) * C
- A * (B + C) = A * B + A * C
- (B + C) * A = B * A + C * A
- Im * A = A * Im = A
- The identity matrix is defined as follows:
- Important properties multiplication DOES NOT have
- Not commutative; A * B != B * A
- AB = AC does NOT imply B = C (cannot cancel out)
- AB = 0 does NOT imply A = 0 or B = 0
Example Showing Matrix Multiplication
Scalar Multiplication
Matrix Transpose
A matrix with m rows by n columns can be transposed into a matrix with n rows by m columns
Examples
Properties of Transpose
- (AT)T = A
- (A + B)T = BT + AT
- r * AT = (rA)T
- (A * B)T = BT * AT
Square Matrices
Square Matrices have an equal number of rows and columns
- If A and B are both square, then AB and BA both exist
- Square matrices can be raised to an exponent
- Ak = A * A * … * A (k times)
Examples
$$
\begin{pmatrix}
0 & 1
1 & 0
\end{pmatrix}^2 =
\begin{pmatrix}
0 & 1
1 & 0
\end{pmatrix}
\begin{pmatrix}
0 & 1
1 & 0
\end{pmatrix} =
\begin{pmatrix}
1 & 0
0 & 1
\end{pmatrix} \
\begin{pmatrix}
1 & 1 & 0
1 & 0 & 0
0 & 0 & 1
\end{pmatrix}^3 =
\begin{pmatrix}
1 & 1 & 0
1 & 0 & 0
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
1 & 1 & 0
1 & 0 & 0
0 & 0 & 1
\end{pmatrix}^2
=
\begin{pmatrix}
1 & 1 & 0
1 & 0 & 0
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
2 & 1 & 0
1 & 1 & 0
0 & 0 & 1
\end{pmatrix} =
\begin{pmatrix}
3 & 2 & 0
2 & 1 & 0
0 & 0 & 1
\end{pmatrix}
$$
Identity Matrix
Denoted as A0 and In
Inverse Matrices
Denoted as A-1
- A-1 only exists for a square matrix
- A-1 * A = A * A-1 = In
- Only exists whenever there is a pivot in every row and column
Examples
$$
\begin{pmatrix}
1 & 1
0 & 1
\end{pmatrix}
\begin{pmatrix}
1 & 1
0 & 1
\end{pmatrix}^2 =
\begin{pmatrix}
1 & 2
0 & 1
\end{pmatrix}
\begin{pmatrix}
1 & 1
0 & 1
\end{pmatrix}^3 =
\begin{pmatrix}
1 & 0
0 & 1
\end{pmatrix}
\begin{pmatrix}
1 & 2
0 & 1
\end{pmatrix} =
\begin{pmatrix}
1 & 3
0 & 1
\end{pmatrix} \
\text{Guess: the inverse is } \begin{pmatrix}
1 & -1
0 & 1
\end{pmatrix}
\begin{pmatrix}
1 & -1
0 & 1
\end{pmatrix}
\begin{pmatrix}
1 & 1
0 & 1
\end{pmatrix} =
\begin{pmatrix}
1 & 0
0 & 1
\end{pmatrix}
\begin{pmatrix}
1 & 1
0 & 1
\end{pmatrix}
\begin{pmatrix}
1 & -1
0 & 1
\end{pmatrix} =
\begin{pmatrix}
1 & 0
0 & 1
\end{pmatrix}
$$