Addition

  • A + B = B + A (commutative)
  • (A + B) + C = A + (B + C) (associative)
  • 0 + A = A
  • (-A) + A = 0

Multiplication

  • In matrix multiplication, the number of columns in the first matrix need to be equal to the number of rows in the second
    • These properties work under the assumption that the dimensions match up
  • A * (B * C) = (A * B) * C
  • A * (B + C) = A * B + A * C
  • (B + C) * A = B * A + C * A
  • Im * A = A * Im = A
  • The identity matrix is defined as follows: (1...00...1)\begin{pmatrix} 1 & ... & 0 \\ \vdots & \ddots & \vdots \\ 0 & ... & 1 \\ \end{pmatrix}
  • Important properties multiplication DOES NOT have
    • Not commutative; A * B != B * A
    • AB = AC does NOT imply B = C (cannot cancel out)
    • AB = 0 does NOT imply A = 0 or B = 0

Example Showing Matrix Multiplication

Consider the matrices (0001) and (0010)(0010)(0001)=(0000)=(0000)(0010)(0001)(0010)=(0010)\text{Consider the matrices } \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \text{ and } \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \\ \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \\ \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}

Scalar Multiplication

A=(a11...a1nam1...amn)rA=(ra11...ra1nram1...ramn)=(r...00...r)A=A(r...00...r)A = \begin{pmatrix} a_{11} & ... & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & ... & a_{mn} \end{pmatrix} \\ r * A = \begin{pmatrix} ra_{11} & ... & ra_{1n} \\ \vdots & \ddots & \vdots \\ ra_{m1} & ... & ra_{mn} \end{pmatrix} = \begin{pmatrix} r & ... & 0\\ \vdots & \ddots & \vdots \\ 0 & ... & r \end{pmatrix} * A = A * \begin{pmatrix} r & ... & 0\\ \vdots & \ddots & \vdots \\ 0 & ... & r \end{pmatrix}

Matrix Transpose

A matrix with m rows by n columns can be transposed into a matrix with n rows by m columns

Examples

(101234)(120314)(123456789101112)(147102581136912)(0110)T=(0110)\begin{pmatrix} 1 & 0 & 1 \\ 2 & 3 & 4 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 \\ 0 & 3 \\ 1 & 4 \end{pmatrix} \\ \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \\ 10 & 11 & 12 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 4 & 7 & 10 \\ 2 & 5 & 8 & 11 \\ 3 & 6 & 9 & 12 \end{pmatrix} \\ \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}^T = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}

Properties of Transpose

  • (AT)T = A
  • (A + B)T = BT + AT
  • r * AT = (rA)T
  • (A * B)T = BT * AT

Square Matrices

Square Matrices have an equal number of rows and columns

  • If A and B are both square, then AB and BA both exist
  • Square matrices can be raised to an exponent
    • Ak = A * A * … * A (k times)

Examples

$$ \begin{pmatrix} 0 & 1
1 & 0 \end{pmatrix}^2 = \begin{pmatrix} 0 & 1
1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1
1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0
0 & 1 \end{pmatrix} \

\begin{pmatrix} 1 & 1 & 0
1 & 0 & 0
0 & 0 & 1 \end{pmatrix}^3 = \begin{pmatrix} 1 & 1 & 0
1 & 0 & 0
0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 0
1 & 0 & 0
0 & 0 & 1 \end{pmatrix}^2
= \begin{pmatrix} 1 & 1 & 0
1 & 0 & 0
0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 2 & 1 & 0
1 & 1 & 0
0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 3 & 2 & 0
2 & 1 & 0
0 & 0 & 1 \end{pmatrix} $$

Identity Matrix

Denoted as A0 and In

(100010001)(abc)=(abc)\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} a \\ b \\ c \end{pmatrix}

Inverse Matrices

Denoted as A-1

  • A-1 only exists for a square matrix
  • A-1 * A = A * A-1 = In
  • Only exists whenever there is a pivot in every row and column

Examples

$$ \begin{pmatrix} 1 & 1
0 & 1 \end{pmatrix}
\begin{pmatrix} 1 & 1
0 & 1 \end{pmatrix}^2 = \begin{pmatrix} 1 & 2
0 & 1 \end{pmatrix}
\begin{pmatrix} 1 & 1
0 & 1 \end{pmatrix}^3 = \begin{pmatrix} 1 & 0
0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2
0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 3
0 & 1 \end{pmatrix} \

\text{Guess: the inverse is } \begin{pmatrix} 1 & -1
0 & 1 \end{pmatrix}
\begin{pmatrix} 1 & -1
0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1
0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0
0 & 1 \end{pmatrix}
\begin{pmatrix} 1 & 1
0 & 1 \end{pmatrix} \begin{pmatrix} 1 & -1
0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0
0 & 1 \end{pmatrix}

$$