Linear Dependence

v1,...,vnRmare Linearly Dependent (LD) if there are numbers c1,...,cn such that not all ci=0 and c1v1+...+cnvn=0v_1, ..., v_n \in \mathbb{R}^m \text{are \underline{Linearly Dependent (LD)} if there are numbers } c_1, ..., c_n \\ \text{ such that \underline{not} all } c_i = 0 \text{ and } c_1\overrightarrow{v_1} + ... + c_n\overrightarrow{v_n} = \overrightarrow{0}

This relates to the idea of homogenous system of linear equations.

{0} is Linearly Dependent because 10=0\{\overrightarrow{0}\} \text{ is Linearly Dependent because } 1 * \overrightarrow{0} = \overrightarrow{0} In R2{(23),(10),(01)}1(23)+2(10)3(01)=0This set is therefore linearly dependent.\text{In } \mathbb{R}^2 \text{: } \{\begin{pmatrix}2\\3\end{pmatrix}, \begin{pmatrix}1\\0\end{pmatrix}, \begin{pmatrix}0\\1\end{pmatrix}\} \\ 1 * \begin{pmatrix}2\\3\end{pmatrix} + 2 * \begin{pmatrix}1\\0\end{pmatrix} - 3 * \begin{pmatrix}0\\1\end{pmatrix} = \overrightarrow{0} \\ \text{This set is therefore linearly dependent.}

Linear Indepdence

v1,...,vnRmare Linearly Independent (LI) if c1v1+...+cnvn=0    c1=c2=...=cn=0v_1, ..., v_n \in \mathbb{R}^m \text{are \underline{Linearly Independent (LI)} if } c_1\overrightarrow{v_1} + ... + c_n\overrightarrow{v_n} = \overrightarrow{0} \implies c_1 = c_2 = ... = c_n = 0

Examples

Example 1 Is {(100),(110),(111)} LI?a(100)+b(110)+c(111)=0{a+b+c=0b+c=0c=0    {a=0b=0c=0\text{Is } \{\begin{pmatrix}1\\0\\0\end{pmatrix}, \begin{pmatrix}1\\1\\0\end{pmatrix}, \begin{pmatrix}1\\1\\1\end{pmatrix}\} \text{ LI?} \\ a * \begin{pmatrix}1\\0\\0\end{pmatrix} + b * \begin{pmatrix}1\\1\\0\end{pmatrix} + c * \begin{pmatrix}1\\1\\1\end{pmatrix} = \overrightarrow{0} \\ \begin{cases} a + b + c = 0 \\ b + c = 0 \\ c = 0 \end{cases} \implies \begin{cases} a = 0 \\ b = 0 \\ c = 0 \end{cases}

Example 2 {(1201),(1012),(1437)}(1110204001301270)(1110013000100000)    {a=0b=0c=0\{\begin{pmatrix}1\\2\\0\\1\end{pmatrix}, \begin{pmatrix}-1\\0\\1\\2\end{pmatrix}, \begin{pmatrix}-1\\4\\3\\7\end{pmatrix} \}\\ \left( \begin{array}{ccc|c} 1 & -1 & -1 & 0 \\ 2 & 0 & 4 & 0 \\ 0 & 1 & 3 & 0 \\ 1 & 2 & 7 & 0 \\ \end{array} \right) \\ \left( \begin{array}{ccc|c} 1 & -1 & -1 & 0 \\ 0 & 1 & 3 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ \end{array} \right) \implies \begin{cases} a = 0 \\ b = 0 \\ c = 0 \end{cases}

In Example 2, we know that there can ONLY be a trivial solution because there is a pivot in every column, meaning that there are no free variables. Thus, the set of vectors are linearly independent.

Linear independence/dependence can help determine the size of a set.

Column Theorem

v1,...,vnRmA=(v1...vn)\overrightarrow{v_1}, ..., \overrightarrow{v_n} \in \mathbb{R}^m \\ A = (\overrightarrow{v_1} ... \overrightarrow{v_n})

The following statements are equivalent (all of them are true or none of them are true):

{v1,...,vn} is Linearly IndependentAx=0    x=0A has a pivot in every column\{\overrightarrow{v_1}, ..., \overrightarrow{v_n}\} \text{ is Linearly Independent} \\ A\overrightarrow{x} = \overrightarrow{0} \implies \overrightarrow{x} = \overrightarrow{0} \\ \text{A has a pivot in every column}

Examples

Example 1 Is {(101),(123),(111)} LI?(111021131)(111021042)(111021000)Because there are only pivots in two of the columns, the set of vectors cannot be linearly independent.\text{Is } \{\begin{pmatrix}1\\0\\-1\end{pmatrix}, \begin{pmatrix}1\\2\\3\end{pmatrix}, \begin{pmatrix}1\\1\\1\end{pmatrix}\} \text{ LI?} \\ \begin{pmatrix} 1 & 1 & 1\\ 0 & 2 & 1\\ -1 & 3 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1\\ 0 & 2 & 1\\ 0 & 4 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1\\ 0 & 2 & 1\\ 0 & 0 & 0 \end{pmatrix} \\ \text{Because there are only pivots in two of the columns, the set of vectors cannot be linearly independent.}

Example 2

For which hR is {(11h),(1h1),(h11)} LI?(11h1h1h11)(11h0h11h01h1h2)(11h0h11h002hh2)2hh2=(1h)(2+h)=0 (To see what values make the vectors linearly independent)h1,2\text{For which } h \in \mathbb{R} \text{ is } \{\begin{pmatrix}1\\1\\ h \end{pmatrix}, \begin{pmatrix}1\\ h \\1\end{pmatrix}, \begin{pmatrix}h \\1\\1\end{pmatrix}\} \text{ LI?} \\ \begin{pmatrix} 1 & 1 & h \\ 1 & h & 1 \\ h & 1 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & h \\ 0 & h - 1 & 1 - h \\ 0 & 1 - h & 1 - h^2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & h \\ 0 & h - 1 & 1 - h \\ 0 & 0 & 2 - h - h^2 \end{pmatrix} \\ 2 - h - h^2 = (1 - h)(2 + h) = 0 \text{ (To see what values make the vectors linearly independent)}\\ h \neq 1, -2

The tricky part is to realize that you have to subtract h * Row 1 from Row 3

Linear (In)dependence and Spans

A set of vectors {v1,...,vn} is LD if and only if one of the vectors is in the span of the others.Therefore, {v1,...,vn} is LI if and only if for all 2knvkSpan{v1,...,vk1}\text{A set of vectors } \{\overrightarrow{v_1}, ..., \overrightarrow{v_n}\} \text{ is LD if and only if one of the vectors is in the span of the others.} \\ \text{Therefore, } \{\overrightarrow{v_1}, ..., \overrightarrow{v_n}\} \text{ is LI if and only if for all } 2 \le k \le n \text{, } \overrightarrow{v_k} \notin Span\{\overrightarrow{v_1}, ..., \overrightarrow{v_{k-1}}\} \\

This means that a set of vectors is linearly independent if and only if adding vectors to the span keeps increasing the dimension of the span.

image

Theorem: Suppose we have v1,...,vnRm, and write the matrix A=(v1...vn)We can therefore delete any vectors from the lest that correspond to non-pivot columns of the REF of A.This is because any non-pivot columns correspond to a vector already in the spans of the other vectors.\text{Theorem: Suppose we have } \overrightarrow{v_1}, ..., \overrightarrow{v_n} \in \mathbb{R}^m \text{, and write the matrix } A = \begin{pmatrix} \overrightarrow{v_1} & ... & \overrightarrow{v_n} \end{pmatrix} \\ \text{We can therefore delete any vectors from the lest that correspond to non-pivot columns of the REF of A.} \\ \text{This is because any non-pivot columns correspond to a vector already in the spans of the other vectors.}

Examples

1 Q: If we add the vector (101) to Span{(100),(110)}, is the resulting set LI?A: Yes, as the new set of vectors has a pivot in every column.(111011001)\text{Q: If we add the vector } \begin{pmatrix}1\\0\\-1\end{pmatrix} \text{ to } Span\{\begin{pmatrix}1\\0\\0\end{pmatrix}, \begin{pmatrix}1\\1\\0\end{pmatrix}\} \text{, is the resulting set LI?} \\ \text{A: Yes, as the new set of vectors has a pivot in every column.} \\ \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & -1 \end{pmatrix}

2 $$ \text{Given the set of vectors } {\begin{pmatrix}1\1\1\end{pmatrix}, \begin{pmatrix}1\2\3\end{pmatrix}, \begin{pmatrix}-1\1\3\end{pmatrix}, \begin{pmatrix}0\1\1\end{pmatrix}, \begin{pmatrix}1\0\3\end{pmatrix}} \text{ which can we remove to find a LI subset with the same span?} \

\text{Through row reduction:}
\begin{pmatrix} 1 & 1 & -1 & 0 & 1
1 & 2 & 1 & 1 & 0
1 & 3 & 3 & 1 & 3 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & -1 & 0 & 1
0 & 1 & 2 & 1 & -1
0 & 2 & 4 & 1 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & -1 & 0 & 1
0 & 1 & 2 & 1 & -1
0 & 0 & 0 & -1 & 4 \end{pmatrix}
\text{Columns 3 and 5 don’t have pivots, so } \begin{pmatrix}-1\1\3\end{pmatrix} \text{ and } \begin{pmatrix}1\0\3\end{pmatrix} \text{ can be removed to find a LI set with the same span.} $$