Example of using Row Theorem to prove a statement
S p a n { ( 1 1 0 ) , ( 1 0 1 ) , ( 0 1 1 ) } = R 3 ? ( 1 1 0 1 0 1 0 1 1 ) → ( 1 1 0 0 − 1 1 0 1 1 ) → ( 1 1 0 0 − 1 1 0 0 2 ) → ( 1 0 1 0 − 1 1 0 0 1 ) → ( 1 0 0 0 1 − 1 0 0 1 ) → ( 1 0 0 0 1 0 0 0 1 ) Because there is a pivot in every row, the span must be equal to R 3 Span\{\begin{pmatrix}1\\1\\0\end{pmatrix}, \begin{pmatrix}1\\0\\1\end{pmatrix}, \begin{pmatrix}0\\1\\1\end{pmatrix} \} = \mathbb{R}^3?\\
\begin{pmatrix}
1 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 1
\end{pmatrix} \rightarrow
\begin{pmatrix}
1 & 1 & 0 \\
0 & -1 & 1 \\
0 & 1 & 1
\end{pmatrix} \rightarrow
\begin{pmatrix}
1 & 1 & 0 \\
0 & -1 & 1 \\
0 & 0 & 2
\end{pmatrix} \rightarrow \\
\begin{pmatrix}
1 & 0 & 1 \\
0 & -1 & 1 \\
0 & 0 & 1
\end{pmatrix} \rightarrow
\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & -1 \\
0 & 0 & 1
\end{pmatrix} \rightarrow
\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix} \\
\text{Because there is a pivot in every row, the span must be equal to } \mathbb{R}^3 Sp an { ⎝ ⎛ 1 1 0 ⎠ ⎞ , ⎝ ⎛ 1 0 1 ⎠ ⎞ , ⎝ ⎛ 0 1 1 ⎠ ⎞ } = R 3 ? ⎝ ⎛ 1 1 0 1 0 1 0 1 1 ⎠ ⎞ → ⎝ ⎛ 1 0 0 1 − 1 1 0 1 1 ⎠ ⎞ → ⎝ ⎛ 1 0 0 1 − 1 0 0 1 2 ⎠ ⎞ → ⎝ ⎛ 1 0 0 0 − 1 0 1 1 1 ⎠ ⎞ → ⎝ ⎛ 1 0 0 0 1 0 0 − 1 1 ⎠ ⎞ → ⎝ ⎛ 1 0 0 0 1 0 0 0 1 ⎠ ⎞ Because there is a pivot in every row, the span must be equal to R 3
Homogeneous SLE’s
A SLE is homogeneous ‾ if its matrix equation is of the form A x → = 0 → and is not homogeneous otherwise. A solution where x → = 0 → is a trivial ‾ solution, as it will always solve A x → = 0 → . Any other solution is nontrivial ‾ . \text{A SLE is \underline{homogeneous} if its matrix equation is of the form } A\overrightarrow{x} = \overrightarrow{0} \text{ and is not homogeneous otherwise.} \\
\text{A solution where } \overrightarrow{x} = \overrightarrow{0} \text{ is a \underline{trivial} solution, as it will always solve } A\overrightarrow{x} = \overrightarrow{0} \text{. Any other solution is \underline{nontrivial}.} A SLE is homogeneous if its matrix equation is of the form A x = 0 and is not homogeneous otherwise. A solution where x = 0 is a trivial solution, as it will always solve A x = 0 . Any other solution is nontrivial .
Example
Does { 3 x 1 + 5 x 2 − 4 x 3 = 0 − 3 x 1 − 2 x 2 + 4 x 3 = 0 6 x 1 + x 2 − 8 x 3 = 0 have a nontrivial solution? { 3 x 1 + 5 x 2 − 4 x 3 = 0 − 3 x 1 − 2 x 2 + 4 x 3 = 0 6 x 1 + x 2 − 8 x 3 = 0 → ( 3 5 − 4 − 3 − 2 4 6 1 − 8 ) ( x 1 x 2 x 3 ) = ( 0 0 0 ) ( 3 5 − 4 0 − 3 − 2 4 0 6 1 − 8 0 ) → ( 3 5 − 4 0 0 3 0 0 0 − 3 0 0 ) → ( 3 5 − 4 0 0 1 0 0 0 0 0 0 ) → ( 1 0 − 4 3 0 0 1 0 0 0 0 0 0 ) { x 1 = 4 3 x 2 = 0 x 3 = x 3 = x 3 ( 4 3 0 1 ) solves the matrix equation. Thus, there ARE nontrivial solutions to the system of equations, as the final vector found is not the 0 vector \text{Does }
\begin{cases}
3x_1 + 5x_2 - 4x_3 = 0 \\
-3x_1 -2x_2 + 4x_3 = 0 \\
6x_1 + x_2 - 8x_3 = 0
\end{cases}
\text{ have a nontrivial solution?} \\
\begin{cases}
3x_1 + 5x_2 - 4x_3 = 0 \\
-3x_1 -2x_2 + 4x_3 = 0 \\
6x_1 + x_2 - 8x_3 = 0
\end{cases} \rightarrow
\begin{pmatrix}
3 & 5 & -4 \\
-3 & -2 & 4 \\
6 & 1 & -8
\end{pmatrix}
\begin{pmatrix}
x_1 \\ x_2 \\ x_3
\end{pmatrix} =
\begin{pmatrix}
0 \\ 0 \\ 0
\end{pmatrix} \\
\left(
\begin{array}{ccc|c}
3 & 5 & -4 & 0 \\
-3 & -2 & 4 & 0 \\
6 & 1 & -8 & 0 \\
\end{array}
\right) \rightarrow
\left(
\begin{array}{ccc|c}
3 & 5 & -4 & 0 \\
0 & 3 & 0 & 0 \\
0 & -3 & 0 & 0 \\
\end{array}
\right) \rightarrow
\left(
\begin{array}{ccc|c}
3 & 5 & -4 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
\end{array}
\right) \rightarrow
\left(
\begin{array}{ccc|c}
1 & 0 & -\frac{4}{3} & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
\end{array}
\right) \\
\begin{cases}
x_1 = \frac{4}{3} \\
x_2 = 0 \\
x_3 = x_3 \\
\end{cases} =
x_3
\begin{pmatrix}
\frac{4}{3} \\
0 \\
1
\end{pmatrix}
\text{ solves the matrix equation.} \\
\text{Thus, there ARE nontrivial solutions to the system of equations, as the final vector found is not the 0 vector} Does ⎩ ⎨ ⎧ 3 x 1 + 5 x 2 − 4 x 3 = 0 − 3 x 1 − 2 x 2 + 4 x 3 = 0 6 x 1 + x 2 − 8 x 3 = 0 have a nontrivial solution? ⎩ ⎨ ⎧ 3 x 1 + 5 x 2 − 4 x 3 = 0 − 3 x 1 − 2 x 2 + 4 x 3 = 0 6 x 1 + x 2 − 8 x 3 = 0 → ⎝ ⎛ 3 − 3 6 5 − 2 1 − 4 4 − 8 ⎠ ⎞ ⎝ ⎛ x 1 x 2 x 3 ⎠ ⎞ = ⎝ ⎛ 0 0 0 ⎠ ⎞ ⎝ ⎛ 3 − 3 6 5 − 2 1 − 4 4 − 8 0 0 0 ⎠ ⎞ → ⎝ ⎛ 3 0 0 5 3 − 3 − 4 0 0 0 0 0 ⎠ ⎞ → ⎝ ⎛ 3 0 0 5 1 0 − 4 0 0 0 0 0 ⎠ ⎞ → ⎝ ⎛ 1 0 0 0 1 0 − 3 4 0 0 0 0 0 ⎠ ⎞ ⎩ ⎨ ⎧ x 1 = 3 4 x 2 = 0 x 3 = x 3 = x 3 ⎝ ⎛ 3 4 0 1 ⎠ ⎞ solves the matrix equation. Thus, there ARE nontrivial solutions to the system of equations, as the final vector found is not the 0 vector
A x → = 0 → has nontrivial solutions whenever there are free variables but will not if there are no free variables. A\overrightarrow{x} = \overrightarrow{0} \text{ has nontrivial solutions whenever there are free variables but will not if there are no free variables.} A x = 0 has nontrivial solutions whenever there are free variables but will not if there are no free variables.
Relating b vector to zero vector
The general solution to A x → = b → is x → = x 0 → + x p → where x p → is a particular solution to A x → = b → and x 0 → is the general solution to A x → = 0 → \text{The general solution to } A\overrightarrow{x} = \overrightarrow{b} \text{ is } \overrightarrow{x} = \overrightarrow{x_0} + \overrightarrow{x_p} \\
\text{ where } \overrightarrow{x_p} \text{ is a particular solution to } A\overrightarrow{x} = \overrightarrow{b} \text{ and } \overrightarrow{x_0} \text{ is the general solution to } A\overrightarrow{x} = \overrightarrow{0} The general solution to A x = b is x = x 0 + x p where x p is a particular solution to A x = b and x 0 is the general solution to A x = 0
Example
A = ( 1 0 1 0 1 2 3 4 4 8 12 16 6 12 18 24 ) b → = ( 0 − 2 − 8 − 12 ) Suppose we know that x p → = ( 1 0 − 1 0 ) solves A x → = b → Solve A x → = 0 → and add x 0 → to x p → ( A 0 → ) = ( 1 0 1 0 0 1 2 3 4 0 4 8 12 16 0 6 12 18 24 0 ) → ( 1 0 1 0 0 0 1 1 2 0 0 0 0 0 0 0 0 0 0 0 ) Because there are no pivots in the last two columns, z and w are free variables. x + z = 0 → x = − z y + z + 2 w = 0 → y = − z − 2 w x 0 → = ( x y z w ) = ( − z − z − 2 w z w ) = ( − z − z z 0 ) + ( 0 − 2 w 0 w ) = z ( − 1 − 1 1 0 ) + w ( 0 − 2 0 1 ) x → = x 0 → + x p → = z ( − 1 − 1 1 0 ) + w ( 0 − 2 0 1 ) + ( 1 0 − 1 0 ) A =
\begin{pmatrix}
1 & 0 & 1 & 0 \\
1 & 2 & 3 & 4 \\
4 & 8 & 12 & 16 \\
6 & 12 & 18 & 24
\end{pmatrix} \\
\overrightarrow{b} =
\begin{pmatrix} 0\\-2\\-8\\-12\end{pmatrix} \\
\text{Suppose we know that } \overrightarrow{x_p} = \begin{pmatrix}1\\0\\-1\\0\end{pmatrix} \text{ solves } A\overrightarrow{x} = \overrightarrow{b} \\
\text{Solve } A\overrightarrow{x} = \overrightarrow{0} \text{ and add } \overrightarrow{x_0} \text{ to } \overrightarrow{x_p} \\
\left(
\begin{array}{c|c}
A & \overrightarrow{0}
\end{array}
\right) =
\left(
\begin{array}{cccc|c}
1 & 0 & 1 & 0 & 0\\
1 & 2 & 3 & 4 & 0\\
4 & 8 & 12 & 16 & 0\\
6 & 12 & 18 & 24 & 0
\end{array}
\right) \rightarrow
\left(
\begin{array}{cccc|c}
1 & 0 & 1 & 0 & 0\\
0 & 1 & 1 & 2 & 0\\
0 & 0 & 0 & 0 & 0\\
0 & 0 & 0 & 0 & 0
\end{array}
\right) \\
\text{Because there are no pivots in the last two columns, z and w are free variables.} \\
x + z = 0 \rightarrow x = -z \\
y + z + 2w = 0 \rightarrow y = -z - 2w \\
\overrightarrow{x_0} = \begin{pmatrix}x\\ y\\ z\\ w\end{pmatrix} =
\begin{pmatrix}
-z \\
-z - 2w\\
z\\
w
\end{pmatrix} =
\begin{pmatrix}
-z \\
-z \\
z\\
0
\end{pmatrix} +
\begin{pmatrix}
0 \\
-2w \\
0\\
w
\end{pmatrix} =
z
\begin{pmatrix}
-1 \\
-1 \\
1\\
0
\end{pmatrix} +
w
\begin{pmatrix}
0 \\
-2 \\
0\\
1
\end{pmatrix} \\
\overrightarrow{x} = \overrightarrow{x_0} + \overrightarrow{x_p} =
z
\begin{pmatrix}
-1 \\
-1 \\
1\\
0
\end{pmatrix} +
w
\begin{pmatrix}
0 \\
-2 \\
0\\
1
\end{pmatrix} +
\begin{pmatrix}
1 \\
0 \\
-1\\
0
\end{pmatrix} A = ⎝ ⎛ 1 1 4 6 0 2 8 12 1 3 12 18 0 4 16 24 ⎠ ⎞ b = ⎝ ⎛ 0 − 2 − 8 − 12 ⎠ ⎞ Suppose we know that x p = ⎝ ⎛ 1 0 − 1 0 ⎠ ⎞ solves A x = b Solve A x = 0 and add x 0 to x p ( A 0 ) = ⎝ ⎛ 1 1 4 6 0 2 8 12 1 3 12 18 0 4 16 24 0 0 0 0 ⎠ ⎞ → ⎝ ⎛ 1 0 0 0 0 1 0 0 1 1 0 0 0 2 0 0 0 0 0 0 ⎠ ⎞ Because there are no pivots in the last two columns, z and w are free variables. x + z = 0 → x = − z y + z + 2 w = 0 → y = − z − 2 w x 0 = ⎝ ⎛ x y z w ⎠ ⎞ = ⎝ ⎛ − z − z − 2 w z w ⎠ ⎞ = ⎝ ⎛ − z − z z 0 ⎠ ⎞ + ⎝ ⎛ 0 − 2 w 0 w ⎠ ⎞ = z ⎝ ⎛ − 1 − 1 1 0 ⎠ ⎞ + w ⎝ ⎛ 0 − 2 0 1 ⎠ ⎞ x = x 0 + x p = z ⎝ ⎛ − 1 − 1 1 0 ⎠ ⎞ + w ⎝ ⎛ 0 − 2 0 1 ⎠ ⎞ + ⎝ ⎛ 1 0 − 1 0 ⎠ ⎞