Span Properties

If b,cSpan{v1,...,vn}Then: b+cSpanbSpan0Span (always true)λR,bSpanλbSpan\text{If } \overrightarrow{b}, \overrightarrow{c} \in Span\{\overrightarrow{v_1}, ..., \overrightarrow{v_n}\} \\ \text{Then: } \\ \overrightarrow{b} + \overrightarrow{c} \in Span \\ -\overrightarrow{b} \in Span \\ \overrightarrow{0} \in Span \text{ (always true)} \\ \lambda \in \mathbb{R}, \overrightarrow{b} \in Span \rightarrow \lambda * \overrightarrow{b} \in Span

Spans can either have no points (only the zero vector) or an infinite amount of points, but the magnitude of that infinity can vary.

Span{v1,...,vn}=RmSpan\{\overrightarrow{v_1}, ..., \overrightarrow{v_n}\} = \mathbb{R}^m

Matrix-Vector Multiplication

A=(a11...a1nam1...amn)V=(v1vn)AV=(a11...a1nam1...amn)(v1vn)=(a11v1+a12v2+...+a1nvna21v1+a22v2+...+a2nvnam1v1+am2v2+...+amnvn)AV=(a1an)(v1vn)=v1a1+v2a2+...+vnanA = \begin{pmatrix} a_{11} & ... & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & ... & a_{mn} \end{pmatrix} \\ \overrightarrow{V} = \begin{pmatrix}v_1 \\ \vdots \\ v_n\end{pmatrix}\\ A * \overrightarrow{V} = \begin{pmatrix} a_{11} & ... & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & ... & a_{mn} \end{pmatrix} \begin{pmatrix}v_1 \\ \vdots \\ v_n\end{pmatrix} = \begin{pmatrix} a_{11}v_1 + a_{12}v_2 + ... + a_{1n}v_n \\ a_{21}v_1 + a_{22}v_2 + ... + a_{2n}v_n \\ \vdots \\ a_{m1}v_1 + a_{m2}v_2 + ... + a_{mn}v_n \end{pmatrix} \\ A * \overrightarrow{V} = (\overrightarrow{a_1} \ldots \overrightarrow{a_n})\begin{pmatrix}v_1 \\ \vdots \\ v_n\end{pmatrix} = v_1\overrightarrow{a_1} + v_2\overrightarrow{a_2} + ... + v_n\overrightarrow{a_n}

Examples of Matrix-Vector Multiplication

A=(123456)V=(101)AV=(22)=2(11)A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} \\ \overrightarrow{V} = \begin{pmatrix}1 \\ 0 \\ -1\end{pmatrix} \\ A * \overrightarrow{V} = \begin{pmatrix}-2 \\ -2\end{pmatrix} = -2\begin{pmatrix}1 \\ 1\end{pmatrix}
A=(abcd)V=(xy)AV=(ax+bycx+dy)A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \\ \overrightarrow{V} = \begin{pmatrix}x \\ y\end{pmatrix} \\ A * \overrightarrow{V} = \begin{pmatrix}ax + by \\ cx + dy\end{pmatrix}
5u7v+3w=(uvw)(573)5\overrightarrow{u} - 7\overrightarrow{v} + 3\overrightarrow{w} = \begin{pmatrix}\overrightarrow{u} & \overrightarrow{v} & \overrightarrow{w}\end{pmatrix} \begin{pmatrix}5 \\ -7 \\ 3\end{pmatrix}

SLEs as Matrix Equations

Ax=b where x,bRmA=(a11...a1nam1...amn)x=(x1xn)b=(b1bm) (where b are all constants)Ax=x1a1++xnanTo find a solution to this, we can create an augmented matrix.(Ab)=(a1anb)A * \overrightarrow{x} = \overrightarrow{b} \text{ where } \overrightarrow{x}, \overrightarrow{b} \in \mathbb{R}^m \\ A = \begin{pmatrix} a_{11} & ... & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & ... & a_{mn} \end{pmatrix} \\ \overrightarrow{x} = \begin{pmatrix}x_1 \\ \vdots \\ x_n\end{pmatrix} \\ \overrightarrow{b} = \begin{pmatrix}b_1 \\ \vdots \\ b_m\end{pmatrix} \text{ (where b are all constants)} \\ A * \overrightarrow{x} = x_1\overrightarrow{a_1} + \ldots + x_n\overrightarrow{a_n} \\ \text{To find a solution to this, we can create an augmented matrix.} \\ \left( \begin{array}{c|c} A & \overrightarrow{b} \end{array} \right) = \left( \begin{array}{ccc|c} \overrightarrow{a_1} & \ldots & \overrightarrow{a_n} & \overrightarrow{b} \end{array} \right)

Example

A=(301110134),b=(112)(Ab)=(301111011342)=(1001801098001118)Thus, A(1898118)=bA = \begin{pmatrix} 3 & 0 & 1 \\ 1 & -1 & 0 \\ 1 & 3 & 4 \end{pmatrix}, \overrightarrow{b} = \begin{pmatrix}1 \\ 1 \\ 2\end{pmatrix} \\ \left( \begin{array}{c|c} A & \overrightarrow{b} \end{array} \right) = \left( \begin{array}{ccc|c} 3 & 0 & 1 & 1 \\ 1 & -1 & 0 & 1 \\ 1 & 3 & 4 & 2 \\ \end{array} \right) = \left( \begin{array}{ccc|c} 1 & 0 & 0 & -\frac{1}{8} \\ 0 & 1 & 0 & -\frac{9}{8} \\ 0 & 0 & 1 & \frac{11}{8} \\ \end{array} \right) \\ \text{Thus, } A \begin{pmatrix} -\frac{1}{8} \\ -\frac{9}{8} \\ \frac{11}{8} \end{pmatrix} = \overrightarrow{b}

Properties of Matrix-Vector Multiplication

A(v+w)=Av+AwA(cv)=c(Av)A * (\overrightarrow{v} + \overrightarrow{w}) = A * \overrightarrow{v} + A * \overrightarrow{w} \\ A * (c * \overrightarrow{v}) = c * (A * \overrightarrow{v})

Row Theorem

Suppose we have a1,,anRmLetting A=(a1,,an), the following statements are equivalent. (They’re all true or all false)1. Span{a1,,an}=Rm2. Ax=b is consistent for every b3. The RREF of A has a pivot in every row\text{Suppose we have }\overrightarrow{a_1}, \ldots, \overrightarrow{a_n} \in \mathbb{R}^m \\ \text{Letting } A = (\overrightarrow{a_1}, \ldots, \overrightarrow{a_n}) \text{, the following statements are equivalent. (They're all true or all false)}\\ \text{1. } Span\{\overrightarrow{a_1}, \ldots, \overrightarrow{a_n}\} = \mathbb{R}^m \\ \text{2. } A\overrightarrow{x} = \overrightarrow{b} \text{ is consistent for every } \overrightarrow{b} \\ \text{3. The RREF of A has a pivot in every row}

Example

u,v,wR4Can Span{u,v,w}=R4?A=(u1v1w1u4v4w4)Because there is at least one row that does not have a pivot, all of the parts of the theorem are not true. Therefore, it does not span R4.\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w} \in \mathbb{R}^4 \\ \text{Can } Span\{\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}\} = \mathbb{R}^4\text{?}\\ A = \begin{pmatrix} u_1 & v_1 & w_1 \\ \vdots & \vdots & \vdots \\ u_4 & v_4 & w_4 \end{pmatrix} \\ \text{Because there is at least one row that does not have a pivot, all of the parts of the theorem are not true. Therefore, it does not span R4.}