Row Reduced Echelon Form is a matrix with pivots that have a value of 1 and each of the pivots have 0s above and below them

Examples of reduction:

Example 1

(01234567091011)\left( \begin{array}{ccc|c} 0 & 1 & 2 & 3 \\ 4 & 5 & 6 & 7 \\ 0 & 9 & 10 & 11 \end{array} \right) \\ (45670123091011)\left( \begin{array}{ccc|c} 4 & 5 & 6 & 7 \\ 0 & 1 & 2 & 3 \\ 0 & 9 & 10 & 11 \end{array} \right) \\ (4567012300816)\left( \begin{array}{ccc|c} 4 & 5 & 6 & 7 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & -8 & -16 \end{array} \right) \\ (456701230012)\left( \begin{array}{ccc|c} 4 & 5 & 6 & 7 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 1 & 2 \end{array} \right) \\ (456701010012)\left( \begin{array}{ccc|c} 4 & 5 & 6 & 7 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 2 \end{array} \right) \\

Row Reduced Echelon Form:

(100001010012)\left( \begin{array}{ccc|c} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 2 \end{array} \right) \\

Example 2

(121011323014)\left( \begin{array}{ccc|c} 1 & 2 & 1 & 0 \\ 1 & -1 & 3 & -2 \\ 3 & 0 & 1 & 4 \end{array} \right) \\

As shown in the last lecture, this equals:

(121003220088)\left( \begin{array}{ccc|c} 1 & 2 & 1 & 0 \\ 0 & -3 & 2 & -2 \\ 0 & 0 & -8 & 8 \end{array} \right) \\ (121003220011)\left( \begin{array}{ccc|c} 1 & 2 & 1 & 0 \\ 0 & -3 & 2 & -2 \\ 0 & 0 & 1 & -1 \end{array} \right) \\ (121003000011)(121001000011)\left( \begin{array}{ccc|c} 1 & 2 & 1 & 0 \\ 0 & -3 & 0 & 0 \\ 0 & 0 & 1 & -1 \end{array} \right) \rightarrow \left( \begin{array}{ccc|c} 1 & 2 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & -1 \end{array} \right)

Row Reduced Echelon Form:

(100101000011)\left( \begin{array}{ccc|c} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & -1 \end{array} \right)

Example 3 (Infinitely Many Solutions)

System={x+3y+z+w=14x9y+2zw=13y6z3w=3y+2z+w=1\text{System} = \begin{cases} x + 3y + z + w = 1 \\ -4x - 9y + 2z - w = -1 \\ -3y - 6z - 3w = -3 \\ y + 2z + w = 1 \end{cases} (13111492110363301211)\left( \begin{array}{cccc|c} 1 & 3 & 1 & 1 & 1 \\ -4 & -9 & 2 & -1 & -1 \\ 0 & -3 & -6 & -3 & -3 \\ 0 & 1 & 2 & 1 & 1 \end{array} \right) (13111492110121101211)\left( \begin{array}{cccc|c} 1 & 3 & 1 & 1 & 1 \\ -4 & -9 & 2 & -1 & -1 \\ 0 & 1 & 2 & 1 & 1 \\ 0 & 1 & 2 & 1 & 1 \end{array} \right) (13111492110121100000)\left( \begin{array}{cccc|c} 1 & 3 & 1 & 1 & 1 \\ -4 & -9 & 2 & -1 & -1 \\ 0 & 1 & 2 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{array} \right) (13111036330121100000)(13111012110121100000)\left( \begin{array}{cccc|c} 1 & 3 & 1 & 1 & 1 \\ 0 & 3 & 6 & 3 & 3 \\ 0 & 1 & 2 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{array} \right) \rightarrow \left( \begin{array}{cccc|c} 1 & 3 & 1 & 1 & 1 \\ 0 & 1 & 2 & 1 & 1 \\ 0 & 1 & 2 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{array} \right) (13111012110000000000)\left( \begin{array}{cccc|c} 1 & 3 & 1 & 1 & 1 \\ 0 & 1 & 2 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{array} \right)

To get this into reduced row echelon form, we must get rid of some more of the coefficients.

(10522012110000000000)\left( \begin{array}{cccc|c} 1 & 0 & -5 & -2 & -2 \\ 0 & 1 & 2 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{array} \right) New System={x+5z2w=2y+2z+w=10=00=0\text{New System} = \begin{cases} x + - 5z - 2w = -2 \\ y + 2z + w = 1 \\ 0 = 0 \\ 0 = 0 \end{cases}

The last two equations show that z and w are free variables, and x and y can be expressed in terms of these free variables (so they are constrained variables).

x=5z+2w2y=2zw+1x = 5z + 2w - 2 \\ y = -2z - w + 1 \\